数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを<u>一つだけ</u>選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

II 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら手をあげて知らせてください。
- 5. 問題冊子には、メモや計算などを書いてもいいです。

III 解答用紙に関する注意

- 1. 解答は、解答用紙に鉛筆 (HB)で記入してください。
- 2. 問題文中のA, B, C, …には、それぞれ-(マイナスの符号), または、 0 から 9 までの数が一つずつ入ります。あてはまるものを選び、解答用紙 (マークシート) の対応する解答欄にマークしてください。

解答方法に関する注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{12}$ のときは、 $2\sqrt{3}$ と答えます。)
- (2) 符号は分子につけ、分母・分子は既約分数 (reduced fraction) にして 答えてください。

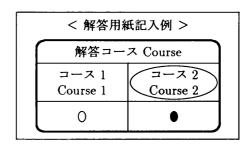
(例:
$$\frac{2}{6}$$
は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{ A \sqrt{B} }$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、以下のようにマークしてください。
- (4) $\boxed{\mathsf{DE}} x \, \mathsf{e} \, -x \, \mathsf{e} \, \mathsf{f} \, \mathsf{e} \, \mathsf{e}$

【解答用紙】

Α	•	0	1	2	3	4	5	6	7	8	9	
В	Θ	0	1	2	•	4	5	6	7	8	9	
С	Θ	0	1	2	3	•	(5)	6	7	8	9	
D		0	1	2	3	4	5	6	7	8	9	
Ε	Θ	0		2	3	4	5	6	0	8	9	

- 3. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。


受験番号		*			*			
名 前								

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを一つだけ選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の左上にある「解答コース」の「コース2」を〇で囲み、その下のマーク欄をマークしてください。選択したコースを正しくマークしないと、採点されません。

I

問1 次の2つの条件を満たす2次関数を求めよう:

- (i) x=1とx=5で同じ値をとる。
- (ii) $-2 \le x \le 6$ における最大値は 30 であり、最小値は -20 である。

求める2次関数を

$$y = ax^2 + bx + c$$

とおくと,条件(i)より

$$b = -$$
 A a

を得る。さらに、この2次関数は条件(ii)を満たすから

$$\begin{cases} - \boxed{\mathbf{B}} a + c = -20 \\ \boxed{\mathbf{CD}} a + c = 30 \end{cases}$$

または

$$\begin{cases}
- \boxed{\mathsf{B}} \quad a + c = 30 \\
\boxed{\mathsf{CD}} \quad a + c = -20
\end{cases}$$

を得る。したがって、求める2次関数は

$$y = \begin{bmatrix} \mathbf{E} \end{bmatrix} x^2 - \begin{bmatrix} \mathbf{FG} \end{bmatrix} x - \begin{bmatrix} \mathbf{H} \end{bmatrix}$$

ع

$$y = I$$
 $x^2 +$ JK $x +$ LM

である。

問 2 P = 6ab + 9a - 4b - 6 とする。

(1) Pは

と因数分解できる。

(2)
$$a=\frac{\sqrt{6}}{3}$$
, $P=\sqrt{3}-\sqrt{2}$ のとき, $b=\frac{\sqrt{\mathbb{R}-\mathbb{S}}}{\mathbb{T}}$ である。

(3) P=17 を満たす整数 a,b の組は

の2組である。

- 注) 因数分解する: factorize
 - の問題はこれで終わりです。

II

等比数列 $\{a_n\}$ $(n=1,2,3,\cdots)$ は、初項から第 10 項までの和が 93 であり

$$a_1 - a_2 + a_3 - a_4 + a_5 - a_6 + a_7 - a_8 + a_9 - a_{10} = 31$$

を満たす。このとき

- $\{a_n\}$ の公比は $egin{array}{c|c} egin{array}{c|c} egin{array}{c|c} egin{array}{c|c} egin{array}{c|c} egin{array}{c|c} egin{array}{c|c} egin{array}{c|c} \hline egin{array}{c|c} egin{array}{c|c} \hline egin{array}{c|c} egin{array}{c|c} \hline egin{array}{c|c} egin{array}{c|c} \hline \end{array}$ である。
- (2) また

$$1 - \frac{a_1}{a_2} + \frac{a_1}{a_3} - \frac{a_1}{a_4} + \frac{a_1}{a_5} - \frac{a_1}{a_6} + \frac{a_1}{a_7} - \frac{a_1}{a_8} + \frac{a_1}{a_9} - \frac{a_1}{a_{10}} = -$$

である。

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{K}$ \sim $oxed{Z}$ は空欄のままにしてください。

注) 等比数列: geometric progression, 公比: common ratio

III

正の実数 a に対して、x の方程式

$$2^{x^2+6} = a^{2x-5}$$
 ①

の解の個数を調べよう。

① は

$$x^2 -$$
 A $(\log_2 a)x +$ **B** $\log_2 a +$ **C** $= 0$

と変形できる。この 2 次方程式の判別式を D とおくと

$$\frac{D}{4} = (\log_2 a + \boxed{\mathsf{D}})(\log_2 a - \boxed{\mathsf{E}})$$

となる。したがって

$$oldsymbol{F}$$
 $< a <$ $oldsymbol{HI}$ のとき、解は $oldsymbol{J}$ 個 $a = oldsymbol{F}$, $oldsymbol{HI}$ のとき、解は $oldsymbol{K}$ 個 $a < oldsymbol{F}$, $oldsymbol{HI}$ $< a$ のとき、解は $oldsymbol{L}$ 個

である。

また

$$a = \frac{\mathsf{F}}{\mathsf{G}}$$
 のとき、① の解は \mathbf{MN}

であり

$$a = \begin{bmatrix} HI \end{bmatrix}$$
 のとき、① の解は $\boxed{\mathbf{O}}$

である。

注) 判別式: discriminant

- 計算欄 (memo) -

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{P}$ \sim $oxed{Z}$ は空欄のままにしてください。

$\overline{\text{IV}}$

問 1 関数 f(x) の導関数は x^2+x-1 である。さらに、y=f(x) のグラフが直線 y=x+1 と接しているとき、f(x) を求めよう。

まず、y = f(x) と y = x + 1 の接点の座標を求めよう。接線の傾きが A であるから

$$x^2 + x - \boxed{\mathbf{B}} = 0$$

を解くと、接点のx 座標 CD, E が求まる。よって、接点の座標は

となる。

したがって、求める f(x) は

または

$$y = f(x) = \frac{1}{ } x^3 + \frac{1}{ } x^2 - x + \frac{ MN }{ }$$
 ②

である。

さらに、① のグラフは ② のグラフを y 軸方向に平行移動したものであるから、②、② の

グラフと 2 つの直線 $x = \begin{bmatrix} CD \end{bmatrix}$, $x = \begin{bmatrix} E \end{bmatrix}$ によって囲まれる部分の面積は $\begin{bmatrix} PQ \end{bmatrix}$ である。

注) 導関数: derivative

- 計算欄 (memo) -

数学-20

問 2 関数

$$f(x) = |\sin 2x| \cos 2x \quad (0 \le x \le \pi)$$

は
$$x = \frac{\pi}{R}$$
 , $x = \frac{S}{T} \pi$ で極大値 $\frac{1}{U}$ をとり,また, $x = \frac{\pi}{V}$ のときも極大値 W をとる。

関数 y = f(x) のグラフと x 軸が囲む図形の面積を S とおくと

$$\int_0^{\frac{\pi}{4}} f(x) \, dx = \frac{\mathbf{X}}{\mathbf{Y}}$$

に注意して

$$S = \boxed{Z}$$

を得る。

- 計算欄 (memo) -

IV の問題はこれで終わりです。

コース2の問題はこれですべて終わりです。

解答用紙の V は空欄のままにしてください。

この問題冊子を持ち帰ることはできません。

〈数学〉

コース1

	I											
問			問1			問 2						
解答欄	Α	В	CD	EFGH	IJKLM	NOPQ	RST	U٧	WXYZ			
正解	6	9	16	2122	21212	3223	264	17	-5 -2			

	I											
問			問 1			問 2						
解答欄	ABC	DE	FGH	IJ	KL	М	NOP	Q	R			
正解	210	21	370	37	27	2	-29	7	9			

問				Ш			
解答欄	AB	CDE	FG	HI	JKL	MNO	PQR
正解	60	120	62	30	150	438	253

問		N									
解答欄	Α	В	CD	E	F	G	Н	ı	J		
正解	2	6	-4	1	2	6	3	2	1		

コース 2

	I										
問	問 1 問 2										
解答欄	Α	В	CD	EFGH	IJKLM	NOPQ	RST	UV	WXYZ		
正解	6	9	16	2122	21212	3223	264	17	-5 -2		

問		I										
解答欄	AB	CDEFG	HIJ	ABC	DE	FG	HI	J	K	L	MN	0
正解	12	51211	341	256	16	12	64	0	1	2	-1	6

					N	J				
問	問 1									
解答欄	Α	В	CD	E	FG	Н	IJ	KL	MNO	PQ
正解	1	2	-2	1	-1	2	32	73	136	27

	N											
問	問 2											
解答欄	R	ST	J	V	W	XY	Z					
正解	8	78	2	2	0	14	1					